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Abstract—The industrial internet of things (IIoT) has been
widely deployed to provide autonomous inspection on current
production status and quality of products for modern man-
ufacturing. However, the IIoT sensors generally are short of
computing capabilities and therefore could not offer acceptable
latency for computation-intensive inspection tasks. Besides, the
mission-critical industrial applications are extremely sensitive to
inspection failure, which may lead to serious manufacturing prob-
lems or accidents. In this paper, we propose a risk-aware cloud-
edge computing framework for the delay-sensitive inspections of
autonomous manufacturing. Due to the uncertainty of 802.11ax,
we utilize the conditional value-at-risk (CVaR) to measure the
inspection risk basing on the distribution of channel access delay.
We develop a branch-and-check (BNC) approach to optimally
and efficiently deploy the decomposable inspection tasks with the
minimum operation cost and acceptable latency. The extensive
simulations guide the operational use for future IIoT and the
results show that the proposed system can save a large amount
of unnecessary operation cost by enabling the processor sharing
strategy.

Index Terms—Industrial IoT, edge computing, delay-sensitive,
conditional value-at-risk

I. INTRODUCTION

With the evolution of Industry 4.0, factory automation
becomes one of the most important concepts to improve pro-
duction efficiency and the economic benefits [1]. To meet the
trend of modern autonomous manufacturing, more and more
sensors deployed within the smart factory form an industrial
internet of things (IIoT) to collect data, which is utilized to
give recommendations and feedback on current production
status and quality of products [2]. Note that various industrial
applications require reliable and efficient inspections, such
as package inspection, automated surface defect detection,
predictive maintenance, and so on. However, the IIoT sensor
generally is empowered with limited computing capabilities
so that it could not perform advanced computer vision for
autonomous inspections, especially when the powerful deep
learning-based techniques are applied. Moreover, autonomous
inspection in industrial scenarios is usually time-sensitive,
which means that even a little inspection failure will lead to
serious manufacturing problems or accidents.

In recent years, edge computing has emerged as a promising
solution to process the computation-intensive tasks offloaded
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by IIoT [3]. Compared with the traditional cloud computing,
edge computing provides sufficient computing capabilities
closer to the IIoT devices and therefore avoids the long-
distance transmission delay to the cloud [4, 5]. In addition, the
mission-critical industrial applications are extremely sensitive
to the failure caused by the overtime of inspection tasks.
Note that an offloaded task may be under the risk due to the
uncertainty of wireless environments, such as varying wireless
channel conditions [6], the unknown channel estimation errors
[7], the contention-based communication protocol [8], and so
on. Therefore, it is necessary to focus on the inspection risk of
the IIoT system to ensure the reliability of the edge computing-
based offloading services.

The 5G NR on unlicensed bands (NR-U) has been regarded
as a candidate communication technology for the future smart
factory [9], however, the standardization is still underway.
Nevertheless, the IEEE 802.11ax (WiFi 6) formally published
in 2019 has delivered significant performance improvements
in indoor communications and therefore it is recognized as
a complementary technology to the industrial applications.
Different from the upcoming 5G NR-U, the 802.11ax can
be quickly deployed without any interaction with the network
operator. To the best of our knowledge, relatively little work
discusses the impact of the 802.11-based protocols on the
delay-sensitive industrial applications.

Based on the above discussions, we propose a risk-aware
cloud-edge computing framework for the delay-sensitive in-
spections of autonomous manufacturing executed by IIoT-
based vision sensors. The edge computing cluster provides
local processing for latency reduction and the remote cloud
center provides fast computation service. Specifically, we
adopt 802.11ax as the wireless communication protocol within
the smart factory to provide connectivity to the sensors. We
assume that the delay-sensitive inspection tasks are decompos-
able so that each of them can be partitioned into two sub-tasks
and processed sequentially. Besides, the processor sharing
strategy is allowed to the local processors at the edge to cut
down the buying of unnecessary processors. By leveraging the
power of the cloud-edge computing architecture, the owner of
the factory aims to optimally deploy the inspection tasks over a
long duration of running with the minimum total operation cost
and acceptable latency. Our main contributions are as follows:
• We propose a risk-aware cloud-edge computing framework

for the delay-sensitive inspections of autonomous manufac-
turing. To tackle the uncertainty of the channel access delay
caused by the 802.11ax, we model its delay distribution
in terms of mean and variance. We utilize the conditional
value-at-risk (CVaR), which has been extensively used in
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portfolio optimization for effective risk management [10],
to measure the inspection risk to guarantee the reliability of
the offloading services.

• We formulate a cost minimization problem for optimal
offloading service deployment subject to the latency require-
ments and reliability threshold. We develop a branch-and-
check (BNC) approach to solve this mixed-integer nonlinear
programming problem (MINLP) optimally and efficiently.
Compared with the widely used branch-and-bound (BNB)
method, the proposed BNC approach greatly reduces the
number of feasibility checks to the worst-case CVaR con-
straint and therefore saves a large amount of computation
time.

• Through extensive simulations, we investigate how the num-
ber of associated sensors and random access resource units
(RA-RUs) to each access point (AP) determines the distribu-
tion of channel access delay and further impacts the optimal
offloading service deployments. We also discuss how the
operation cost and the offloading service deployments are
affected by the operation duration, the reliability threshold,
and the number of inspection sensors, which is valuable
for operational use in industrial applications. The results
show that the proposed approach takes full advantage of the
cloud-edge computing architecture and the processor sharing
strategy to save the unnecessary operation cost.
The rest of this paper is organized as follows. We sum-

marize related works in Section II. The proposed cloud-edge
computing framework is presented in Section III and a cost
minimization problem is formulated in Section IV. To make
the problem solvable, we develop an effective BNC approach
in Section V. We provide extensive evaluation results in
Section VI and, finally, Section VII concludes this paper.

II. RELATED WORK

The computation offloading of edge computing has been
widely studied to process computation-intensive IIoT tasks. A
dynamic computation offloading scheme [11], which aims to
minimize energy consumption in edge computing scenarios, is
proposed for IIoT by jointly optimizing the offloading ratio,
transmission power, local CPU computation speed, and trans-
mission time. The decomposable intelligence is proposed on a
cloud-edge IoT framework [12] to support joint latency- and
accuracy- aware live video analytics. Specifically, it enables
pipeline sharing to reduce unnecessary resource costs at the
edge. Considering the rapid growth of IIoT devices in mobile
edge computing (MEC), a multi-agent deep reinforcement
learning scheme [13] is provided to increase the success rate of
multi-channel access and meanwhile reduce the computation
delay of task offloading.

In the research field of risk-aware edge computing, some
research works try to overcome the uncertainty of wireless
environments. To minimize the total offloading delays of a
heterogeneous edge computing architecture, a power allocation
problem [6] is formulated to achieve reliable communication,
which is constrained by the worst-case channel condition.
The error of channel estimation is taken into consideration
in [7] and an energy-efficient offloading strategy is provided

to ensure the robustness of edge computing service subject to
the latency requirement. To maximize the long-term rewards of
the 802.11p-based vehicular fog computing system, an optimal
task offloading scheme [8] is proposed by jointly considering
the transmission delay, the computing delay, and the available
resources. So far, the uncertainty of the 802.11-based protocol
is rarely discussed for autonomous manufacturing and our
proposed risk-aware framework can guarantee the reliability
of the offloading services.

Due to the service demand uncertainty, a two-stage risk-
averse optimization, including edge resource rental and work-
load assignment, is developed to maximize the deployment
profits of the service provider [14]. To migrate the risk of
overload, several confidence sets are constructed under the
worse-case demand distribution by exploiting historical service
demand traces. The service risk probability (SRP) of virtual
machine (VM) fails is defined and considered in a distributed
cloud/edge computing system [15]. The existence of the op-
timal SRP is theoretically proved for minimum energy cost.
In a vehicular edge computing network, entropic risk measure
is leveraged to formulated a risk minimization problem and a
distributed no-regret learning approach is proposed for task
fetching and offloading [16]. A reliable-aware computation
offloading is proposed to maximize the number of requests in a
UAV-enable edge computing system [17], where the reliability
requirement is modeled as the condition that the achievable
offloading rate should be greater than the requests. However,
it assumes that the task could be arbitrarily partitioned into
multiple subtasks, which may not be applicable for all real-
world tasks. The decomposable task applied in our model is
more practical and more general, especially for those inspec-
tion tasks in IIoT environments. Note that the shared nature
of computation and communication resources of a multi-MEC
servers system may introduce high uncertainly in terms of
limited computation capability and wireless interference, a
con-cooperative game is formulated among users with risk-
seeking or loss-aversion behaviors [18]. Specifically, Prospect
Theory (PT) is adopted to formulate the utility function for
data offloading decisions.

III. SYSTEM MODEL

A. System Architecture

The proposed cloud-edge architecture for autonomous man-
ufacturing inspection is shown in Fig. 1. We consider a
smart factory, where a set of IIoT-based vision sensors N =
{1, . . . , |N |}, are deployed around the manufacturing lines
and have enough energy to capture the visual information of
the productions. Through specific recognition processes, the
analytic results could be utilized to find the possible defects
of products and feedback on the status of the productions.
We assume a set of computation-intensive and time-sensitive
inspection tasks F = {1, . . . , |F|} are processed in this
factory, such as printed circuit board (PCB) defect detection,
chip quality control, and liquid crystal display (LCD) surface
defect inspection. Each sensor plays one type of inspection
tasks from F and it is given in advance. Those sensors
with the specific task f ∈ F form a set Nf . Specifically,
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Fig. 1. Cloud-edge architecture for autonomous manufacturing inspections

some manufacturing requirements are predefined to ensure
the production efficiency of manufacturing lines and outgoing
quality of goods. The production efficiency is reflected by
the required frame sampling rate of each inspection task
operated in different manufacturing lines in order to meet
production capacities and the outgoing quality is sensitive to
the inspection failure caused by violating diverse delay and
accuracy tolerances of inspection tasks. It should be noted that
the accuracy requirement has been reflected by the required
computational resource of different types of inspection tasks
and therefore the accuracy control is beyond the scope of
this paper. We define that each sensor i ∈ N should be
configured at particular frame sampling rate λi and latency
requirement Lreq

i . We assume that the latency requirement is
less than the interval of two contiguous frames, which means
that the current frame should be dropped when the next frame
is generated. As the owner of the smart factory, the goal is to
improve the economic benefits in term of the operation cost
with those predefined manufacturing requirements above.

Since the sensors are generally short of computing capa-
bilities, an edge computing cluster consisting of a controller
and multiple processors is deployed and managed by the smart
factory at the local place to provide offloading services. Let
Kf represent the set of processors allocated to execute the
inspection task of type f ∈ F . Alternatively, an inspection
task can also be processed at the remote cloud center, which
is more powerful than the edge cluster in computing capability
and therefore can provide faster computation service. Besides,
offloading to the cloud means the smart factory can cut
down a part of operation cost of buying local processors. We
assume that all inspection tasks are decomposable, that is, any
inspection task in F can be partitioned into two sub-tasks and
then executed sequentially [12]. For example, a decomposable
task for PCB defect detection finds all the components from
the PCB board and further identifies the defects of each
component. It should be noted that all decomposable tasks are
known in advance by the factory operator and fixed during
the whole operation duration. By taking full advantage of
the cloud-edge computing architecture, there are three feasible
schemes Φ = {eo, co, ce} for the offloading service placement:
1) Edge-Only (EO): the task is completely executed at the
edge; 2) Cloud-Only (CO): the task is completely executed

TABLE I
LIST OF KEY NOTATION

Notation Definition
N Set of IIoT-based vision sensors, ∀i ∈ N
F Set of inspection tasks, ∀f ∈ F
Nf Set of vision sensors with task f
Kf Set of processors allocated to execute task f
λi Frame sampling rate of sensor i
Lreq
i Latency requirement of sensor i

Φ Set of service placement schemes, ∀φ ∈ Φ,
where Φ = {eo, co, ce}

N # of associated sensors of a specific AP
Nr # of RA-RUs for UORA contention process
m Maximum back-off stage
R Retransmission limit
W Minimum size of OCW
Wj Size of OCW for back-off state j
τ Prob. that a sensor transmits in any RA-RUs
p Prob. that a packet encounters a collision
Tc Time duration of a TF cycle taken in a collision
TP Longest time in the TF cycle consumed for

a packet transmission
E[slot] Average length of a slot time
Li Service latency of sensor i, which consists of

channel access delay D(a)
i , transmission delay

D
(t)
i , and computing delay D(c)

i

E[D(a)] Mean of channel access delay D(a)
i

V ar[D(a)] Variance of channel access delay D(a)
i

B Total available bandwidth
ri Data rate from sensor i to its connecting AP
rcld Link capacity between the edge and the cloud
tprog Propagation delay between the edge and the cloud
bf Data size of a uploaded frame with task f
bce
f Data size of scheme CE delivered from the edge

to the cloud
tedge
fφ Processing time of a frame at the edge
tcld
fφ Processing time of a frame at the cloud
xφik Service placement decision of whether the task of

sensor i is executed at processor k with scheme φ
yφk Processor deployment decision of whether a local

processor k is bought and deployed by scheme φ
1− ε Reliability threshold
Cdepl Total deployment cost
C run
i Per frame running cost of sensor i

c Unit price of a processor
eedge
fφ Power consumption at the edge when operating

inspection task of type f with scheme φ
γ Coefficient converting power consumption to cost
πcld service fee per unit time of the cloud

at the cloud; 3) Cloud-Edge (CE): the decomposable task is
executed at the edge and the cloud separately. We introduce a
binary variable xφik ∈ {0, 1} to indicate the service placement
decision for sensor i ∈ Nf with k ∈ Kf and φ ∈ Φ.
When xφik = 1, the task of sensor i is executed at processor
k with scheme φ. To enable wireless connectivity to the
sensors, multiple 802.11ax APs are placed inside the factory
as shown in Fig. 1. We assume that the basic service set
(BSS) coloring technology has been utilized to decrease co-
channel interference among multiple APs and the sensor-AP
association problem is beyond the scope of this paper. The
key notations of this paper are listed in Table I.

B. Channel Access Model
The IEEE 802.11ax standard provides prominent features

for uplink transmission compared with legacy 802.11 stan-
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τ =
2(1− 2p)(1− pR+1)

W
Nr

(1− (2p)m+1)(1− p) + (1− 2p)(1− pR+1) + W
Nr

2mpm+1(1− 2p)(1− pR−m)
, ∀R > m (2)

dards [19]: 1) it enables Orthogonal Frequency Division
Multiple Access (OFDMA) based concurrent multi-user (MU)
transmission through multiple orthogonal sub-channels called
random access resource units (RA-RUs); 2) AP periodically
announces random access information, e.g., the number of RA-
RUs, as well as time synchronization for uplink transmission
in Trigger Frame (TF); 3) it supports trigger-based Uplink
OFDMA Random Access (UORA) as contention mechanism.

In the proposed system, we follow the fundamental assump-
tions of Bianchi’s two-dimensional Markov model [20], that is,
ideal channel conditions (i.e., no hidden terminals and capture)
and saturation throughput (i.e., always nonempty transmission
queue of each sensor). For a specific AP, the number of
associated sensors is denoted by N and total Nr RA-RUs are
allocated for UORA contention process. We have the size of
OFDMA contention window (OCW) for back-off state j as

Wj =

{
2jW ∀0 ≤ j ≤ m
2mW ∀m ≤ j ≤ R , (1)

where W is the minimum size of OCW, m is the maximum
back-off stage, and R is the retransmission limit. We know that
a RA-RU is randomly chosen to transmit when the OFDMA
back-off counter (OBO) decreases to zero. Combining the
derivations from [21–23], the probability that a sensor trans-
mits in any Nr RA-RUs can be calculated by (2) with R ≥ m.
The probability that a transmitted packet encounters a collision
is presented as follows,

p = 1−
(

1− τ

Nr

)N−1

. (3)

For given values of N , Nr, W , m and R, equations (2)(3) can
be solved using numerical methods and an unique solution to
the probabilities τ and p will be generated.

With the known τ and p, we can calculate the probability
that at least one sensor transmits by

Ptr = 1−
(

1− τ

Nr

)N
. (4)

Therefore, the probability that all RA-RUs are in idle will be

Pidle =
(

1− Ptr

)Nr

. (5)

Basing on the definition of TF cycle, the time duration of a
TF cycle taken in idle condition (i.e., all RA-RUs are in idle)
is represented as

Tidle = TH + (TTF + SIFS + Tδ), (6)

where TH, TTF, SIFS and Tδ are the time taken to transmit
header frame, TF frame, Short Interframe Space (SIFS) frame
and propagation delay, respectively. Similarly, the time du-
ration of a TF cycle taken in busy condition (i.e., at least
one RA-RU is occupied) consisting of either collision Tc or
successful transmission Ts is written as

Tc = Ts =TH + (TTF + SIFS + Tδ) + (TP + SIFS + Tδ)

+ (TACK + SIFS + Tδ), (7)

where TACK are the time taken to transmit ACK frame.
Specifically, TP is the longest time consumed by the N sensors.
In this way, average length of a slot time can be calculated by

E[slot] = PidleTidle + (1− Pidle)Ts. (8)

IV. PROBLEM FORMULATION

As the owner of the proposed smart factory, the goal is
to minimize the total operation cost over a long duration of
running subject to the predefined manufacturing requirements
reflected by frame sampling rates and delay requirements
of inspection tasks. As we know that those decomposable
inspection tasks are deployed and served by the cloud-edge
computing architecture. However, the latency of offloading ser-
vice is indeterminate due to the UORA contention mechanism
of 802.11ax. To guarantee the required outgoing quality, we
introduce CVaR as the measurement of the inspection risk.
A cost minimization problem is formulated to save the total
operation cost and meanwhile fit the latency requirements.

A. Service Latency Analysis

For sensor i, we have a comprehensive consideration on the
components of its service latency, which is written as

Li = D
(a)
i +D

(t)
i +D

(c)
i . (9)

Specifically, the channel access delay D(a)
i is the sum of dura-

tions of collisions and back-offs. The transmission delay D(t)
i

is the time interval of a complete data transmission from sensor
i to its connecting AP after successfully occupying the channel
plus the round-trip data forwarding between the edge and the
cloud. The computing delay D(c)

i is the total processing time
of offloading services in the cloud-edge architecture.

1) Channel Access Delay: Due to the random access pro-
cess of 802.11ax, i.e., several back-offs and retransmissions,
we cannot calculate the exact delay of 802.11ax channel ac-
cess. Alternatively, we measure its delay distribution in terms
of mean E[D(a)] and variance V ar[D(a)] by modifying the
mathematical models of [24]. The key approximation of our
model is that we assume an image frame from any inspection
task can be completely delivered in one transmission.

We define Sj as the sum of delays that a packet has
experienced from back-off stage 0 to stage j (0 ≤ j ≤ R) and
finally accesses the channel without any collision. Similarly,
Uj is defined as the sum of delays with unsuccessful channel
access at stage j. Then we have the average delay at back-off
stage j as follows:

E[Sj ] = jTc + E[slot]
j∑

j′=0

( 1

Wj′

Wj′−1∑
w=0

d w
Nr
e
)
, (10)

E[Uj ] = (j + 1)Tc + E[slot]
j∑

j′=0

( 1

Wj′

Wj′−1∑
w=0

d w
Nr
e
)
, (11)
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where Tc is the time duration of a TF cycle taken in a collision
condition, E[slot] is the average length of a slot time, and Wj′

is the size of OFDMA contention window (OCW) for stage j′.
It should be noted that the OFDMA back-off counter (OBO) is
decremented by Nr in 802.11ax and the packet is transmitted
in a randomly selected RA-RU when the OBO decreases to
zero. In this way, the average number of back-offs at stage j′

will be (
∑Wj′−1

w=0 dw/Nre)/Wj′ , where w is a selected back-off
value. It also shows that E[Uj ] has more delay than E[Sj ], i.e.,
Tc, because of collision. Since the UORA contention behavior
follows a truncated geometric distribution [25], the probability
of successful channel access at stage j is calculated by

Qj =
(1− p)pj

1− pR+1
, ∀0 ≤ j ≤ R, (12)

where p is the collision probability. Using (10)(12), we mea-
sure the mean of channel access delay by

E[D(a)] =

R∑
j=0

E[SjQj ]. (13)

Moreover, we define Sj,w as the sum of delays from stage 0
to stage j that w is selected as the back-off value at stage j and
meanwhile the channel is successfully accessed. Accordingly,
the average of Sj,w is expressed as

E[Sj,w] = d w
Nr
e · E[slot] + E[Uj−1]. (14)

Since the value w at stage j is uniformly selected in the range
[0,Wj − 1], the probability to select value w will be 1/Wj .
Therefore, we present the mean of the squared delay as

E[(D(a))2] =

R∑
j=0

(Wj−1∑
w=0

(E[Sj,w])2 Qj
Wj

)
. (15)

Finally, we calculate the variance of channel access delay by

V ar[D(a)] = E[(D(a))2]− (E[D(a)])2. (16)

So far, for each sensor i, its channel access delay in terms
of mean µi and variance Σi can be calculated by substituting
the network configurations of its connecting AP, i.e., N and
Nr, into (13)(16). Specifically, we denote the average delay
E[Sj ] at back-off stage R by Θi for each sensor i, which is
the maximum channel access delay with j = R.

2) Transmission Delay: According to the Shannon bound,
the data rate from sensor i to its connecting AP is

ri =
B

Nr
log2

(
1 +

ρgi
σ2

)
, (17)

where ρ is the transmission power, gi is the channel gain
between sensor i and the AP, and σ2 is the additive white
Gaussian noise at the AP side. Note that total B available
bandwidth is equally divided into Nr RA-RUs and therefore
each RA-RU has B/Nr bandwidth for transmissions. Let bf
denote the data size of a compressed frame uploaded from
each sensor with a specific inspection task f ∈ F . Besides,
we introduce a binary indicator qiψ , that is, qiψ = 1 if sensor
i is connecting to AP ψ. Note that TP is the longest time in
the TF cycle consumed for a packet transmission, we present

its value in AP ψ as

TP(ψ) = max
f∈F,i∈Nf

{qiψbf
ri
}, (18)

where bf/ri is the wireless transmission delay of sensor i if
it executes an inspection task of type f .

We assume that a fixed link capacity rcld with a propagation
delay tprog is provided between the edge cluster and the remote
cloud center for each sensor if need be. Let bce

f denote the data
size of scheme CE delivered from the edge to the cloud. In
this way, the transmission delay of sensor i with the inspection
task f can be calculated by

D
(t)
i =

bf
ri

+
∑
k∈Kf

xco
ik ·

bf
rcld

+
∑
k∈Kf

xce
ik ·

bce
f

rcld

+ 2(1−
∑
k∈Kf

xeo
ik) · tprog, ∀i ∈ Nf . (19)

Specifically, we ignore the transmission delay of those inspec-
tion results responded by the cloud because of the small size
but reserve the calculation of its propagation delay.

3) Computing Delay: We introduce a binary variable yφk ∈
{0, 1} as the processor deployment decision, where yφk = 1
represents that a local processor k is bought at the beginning of
deployment and deployed by executing scheme φ. Specifically,
a processor is allowed to deploy one type of inspection tasks
with single scheme at a time. Imaging that a local processor
may be powerful enough to execute a single inspection task,
therefore, it is potential to cut down the operation cost of
buying unnecessary processors by allowing several sensors to
share the same processor. However, more sensors sharing the
same processor leads to the increase of computing delay due
to the queueing process. Different from the edge computing
cluster, we assume that the remote cloud center has ability to
process a frame immediately once it has arrived. Therefore,
the computing delay of sensor i is

D
(c)
i =

∑
k∈Kf

∑
φ∈Φ

xφik

(∑
i′∈Nf x

φ
i′kλi′

λi
· tedge
fφ + tcld

fφ

)
, (20)

where tedge
fφ and tcld

fφ are the processing time of a frame at the
edge and the cloud, respectively.

B. CVaR Measurement

Recall that the smart factory operates multiple inspection
tasks during the autonomous production to guarantee the target
outgoing quality. However, every time an inspection failure
will cause a missing alarm of possible defects of products
and therefore inevitably bring down the outgoing quality.
Because of the uncertainty of the channel access delay, the
system is exposed to the inspection risk of violating diverse
latency requirements. Therefore, risk control is necessary to
achieve reliable inspections for those delay-sensitive tasks. As
an effective risk assessment measure, the CVaR has significant
advantages over the value-at-risk (VaR) for quantifying the
amount of tail risk in the investment portfolio. In the proposed
system, we exploit the CVaR to measure the inspection risk.

We assume that the factory announces 1−ε as its reliability
threshold to guide the offloading service deployments for those
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inspection tasks, where ε ∈ (0, 1) is the maximum tolerance
to inspection failure. The CVaR at level ε (ε-CVaR) [26] can
be written as

P-CVaRε(L) = inf
β∈R

{
β +

1

ε
EP

[
(L − β)+

]}
, 1 (21)

where L is a measurable loss function, β is an auxiliary
variable, and P is the probability distribution. It can be
observed that the ε-CVaR is a convex function respect to L.
We let the loss function L be Li − Lreq

i for each sensor i,
that is, the service latency minus the latency requirement. To
ensure 1−ε system reliability, the following worse-case CVaR
constraint should be satisfied [27]:

sup
P∈Pi

P-CVaRε(Li − Lreq
i ) ≤ 0, ∀i ∈ N , (22)

where Pi =
{
P : EP[D

(a)
i ] = µi,EP[(D

(a)
i − µi)

2] = Σi

}
.

Furthermore, we find out that the constraint in (22) is
intractable to be solved when substituting (21). Fortunately,
the worst-case CVaR can be converted into a semi-definite
programming (SDP) and therefore calculated efficiently. We
perform SDP reformulation [27] to (22) and obtain the fol-
lowing feasible set for each sensor i:

Mi < 0
βi + 1

ε 〈Ωi,Mi〉 ≤ 0

Mi −
[

0 1
2

1
2 Γi − βi

]
< 0

, 2 (23)

where Γi and Ωi are calculated by

Γi = D
(t)
i +D

(c)
i − L

req
i , (24)

Ωi =

[
Σi + µ2

i µi
µi 1

]
. (25)

C. System Objective

We characterize the operation cost before formally formulat-
ing the optimization problem. The operation cost is comprised
of two parts, i.e., the deployment cost and the running cost.
The deployment cost is the fixed expenses of buying local
processors at the beginning of deployment. Note that those
processors are operated at the edge to provide offloading
services for EO and CE schemes, the deployment cost is
written as

Cdepl = c ·
∑
k∈Kf

∑
φ6=co

yφk , (26)

where c is the unit price of a processor. The running cost is the
cost spent over the time, including the energy consumption at
the edge and the service fee paid to the cloud. Specifically,
compared with the energy consumption of the computing
services, the running cost of data communications can be
ignored. Therefore, the per frame running cost of each sensor
i ∈ Nf is

C run
i =

∑
k∈Kf

∑
φ∈Φ

xφik

(
γeedge
fφ t

edge
fφ + πcldtcld

fφ

)
, (27)

1x+ = max{x, 0}. R denotes the set of all real numbers. EP(·) denotes
the expectation with respect to P.

2X < Y implies that X−Y is positive semidefinite. 〈X,Y〉 = Tr(X,Y)
is the trace scalar product.
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New branch node 

A
lgorithm

 2 

Fig. 2. Flowchart of the proposed BNC approach.

where eedge
fφ is the power consumption at the edge when

operating inspection task of type f with scheme φ, γ is the
coefficient converting power consumption to cost, and πcld is
the service fee per unit time announced by the cloud. The
equations (26)(27) indicate that some operation cost can be
saved if the processor sharing strategy is adopted.

We define ∆ as the duration of running, which is constrained
by either the rate of depreciation of local processors or
a particular purpose for autonomous manufacturing. Given
the value of ∆, the cost minimization problem for those
inspection tasks of type f ∈ F is formulated as follows:

min
xφik,y

φ
k ,βi,Mi

Cdepl + ∆
∑
i∈Nf

λiC
run
i (28)

s.t. C1 :
∑
k∈Kf

∑
φ∈Φ

xφik = 1, ∀i ∈ Nf

C2 :(
∑
i∈Nf

xφikλi) · t
edge
fφ ≤ 1, ∀k ∈ Kf , φ

C3 :
∑
φ∈Φ

yφk ≤ 1, ∀k ∈ Kf

C4 :yφk ≥ x
φ
ik, ∀i ∈ Nf , k ∈ Kf , φ

C5 :yφk ≤
∑
i∈Nf

xφik, ∀k ∈ Kf , φ

C6 :Γi + Θi < 0, ∀i ∈ Nf
C7 :Mi < 0, ∀i ∈ Nf

C8 :βi +
1

ε
〈Ωi,Mi〉 ≤ 0, ∀i ∈ Nf

C9 :Mi −
[

0 1
2

1
2 Γi − βi

]
< 0, ∀i ∈ Nf

xφik ∈{0, 1}, y
φ
k ∈ {0, 1} ∀i ∈ Nf , k ∈ Kf , φ.

The constraint C1 indicates that a inspection task could not
be deployed on multiple processors at the same time, and the
constraint C2 guarantees the stability of service at the edge.
The processor deployment is regulated by the constraints C3-
C5. The constraints C6-C9 guarantee the system reliability
subject to the predefined tolerance threshold. Specifically,
the constraint C6 ensures that the remaining time duration
allocated for channel access should not be longer than the
maximum channel access delay basing on the configurations
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Algorithm 1: Exhaustive Search To Solve IP
1 Initialization: [xφi ] = 0, [Φi] = ∅, [λ̂F

iφ] = 0, [λ̂IF
iφ] = +∞.

2 for i ∈ Nf do
3 Assign C∗i = +∞, φ∗ = eo.
4 for φ ∈ Φ do
5 if IP with xφi = 1 is feasible then
6 Update Φi = Φi ∪ {φ}, λ̂F

iφ = λi.
7 Calculate Ci ={

∆λi(γe
edge
fφ t

edge
fφ + πcldtcld

fφ), φ = co
c+ ∆λi(γe

edge
fφ t

edge
fφ + πcldtcld

fφ), φ 6= co
.

8 if Ci < C∗i then
9 Record C∗i = Ci, φ∗ = φ.

10 end
11 else
12 λ̂IF

iφ = λi.
13 end
14 end
15 if Φi 6= ∅ then
16 Assign xφ

∗

i = 1.
17 end
18 end
19 Output: initial solution [xφi ], global information [Φc

i], [λ̂F
iφ],

and [λ̂IF
iφ].

of m and R. We observe that 1) xφik and yφk are binary decision
variables, 2) βi and Mi are continuous variables, and 3) the
constraints C7,C8,C9 are in SDP formulations. Therefore,
the optimization problem in (28) is a mixed-integer nonlinear
programming problem (MINLP), which is complicated and
very difficult to solve [28].

V. BRANCH-AND-CHECK APPROACH

In this section, we propose a branch-and-check (BNC)
approach executed at the local edge computing controller to
solve the optimization problem (28) optimally and efficiently,
as shown in Fig. 2. In the proposed BNC approach, we separate
the original problem (28) into two subproblems, including
a 0-1 integer programming problem and a set of feasibility
problems. The 0-1 integer programming problem is written as

BP : min
xφik,y

φ
k

Cdepl + ∆
∑
i∈Nf

λiC
run
i

s.t. C1,C2,C3,C4,C5,C6,

xφik ∈{0, 1}, y
φ
k ∈ {0, 1} ∀i ∈ Nf , k ∈ Kf , φ,

which gets rid of continuous variables. For each sensor i ∈
Nf , the feasibility problem is formulated by the worse-case
CVaR constraints C7-C9:

FP : min
βi,Mi

0

s.t. C7,C8,C9,

It can be observed that the continuous variables do not appear
in the objective function.

The proposed BNC approach is based on a branch-and-
bound (BNB) tree. That is to say, its optimality can be
guaranteed. Compared with the widely used BNB method,
the proposed BNC approach greatly reduces the state space
search. To reduce the solution space and accelerate the search
process, a list of global information needs to be maintained:

1) C∗: The minimum operation cost found so far, which is the
upper bound of the system objective.
2) [Φc

i]: Binary variables to indicate the candidate service
placement schemes of sensor i ∈ Nf .
3) [λ̂F

iφ], [λ̂IF
iφ]: The maximum feasible and minimum infeasible

frame rates of sensor i with scheme φ found so far.

A. Initial Upper Bound

The processor sharing strategy can effectively cut down the
operation cost, therefore, serving each sensor by a dedicated
processor provides the upper bound of the problem (28).
Without taking processor sharing into account, the offloading
service deployment of each sensor i ∈ Nf can be solved
separately by replacing xφik with xφi :

IP : min
βi,Mi,x

φ
i

c
∑
φ 6=co

xφi + ∆λi
∑
φ∈Φ

xφi

(
γeedge
fφ t

edge
fφ + πcldtcld

fφ

)
s.t. C1′ :

∑
φ∈Φ

xφi = 1,

C2′ : xφi λi · t
edge
fφ ≤ 1, ∀φ

C6′ : Γ′i + Θi < 0,

C7′ : Mi < 0,

C8′ : βi +
1

ε
〈Ωi,Mi〉 ≤ 0,

C9′ : Mi −
[

0 1
2

1
2 Γ′i − βi

]
< 0,

xφi ∈ {0, 1}, ∀φ

where Γ′i =
[bf
ri

+ xco
i

bf
rcld

+ xce
i

bce
f

rcld
+ 2(1− xeo

i ) · tprog
]

+
∑
φ∈Φ

xφi (tedge
fφ + tcld

fφ)− Lreq
i .

Since the service placement scheme φ has only three choices,
we traverse all choices for each sensor i and then choose
a feasible scheme φ with least operation cost as the initial
upper bound. The overall description of the exhaustive search
to solve IP is shown in Algorithm 1. We can observe that
Algorithm 1 also determines the candidate service placement
schemes [Φc

i].
It should be noted that the latency requirements of some

sensors may not be satisfied with any service placement
schemes. Therefore, those sensors should be removed for the
rest of the search process, that is,

Nf = Nf \ {i : Φi = ∅,∀i ∈ Nf}. (29)

In order to successfully deploy all sensors to the manufacturing
lines, the factory operator may try to decrease frame sampling
rate or relax latency requirement of those infeasible sensors.
Besides, the number of RA-RUs or associated sensors to a AP
can be modified to reduce the risk of channel access delay.

B. Solution Using BNC

The proposed BNC approach works on the solution space
of binary variables (xφik, y

φ
k ) by adopting the BNB tree.

According to the previous discussions, the initial upper bound
ensures that the sensors in the rest of the search process at
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least have one available scheme. Therefore, when a new branch
node is reached, there are two available branching strategies,
that is, deploy the current sensor to a vacant processor or a
processor occupied by other sensors. We make |Kf | = |Nf |
so that there always has a vacant processor to select.

The overall description of the proposed BNC approach
is shown in Algorithm 2. During the search process, the
approach checks whether or not the current solution satisfies
the constraints of BP as well as the set of feasibility problems
FP . Let C(xφik, y

φ
k ) be the total operation cost achieved by

the solution (xφik, y
φ
k ). We can observe that a branch should be

pruned once the current operation cost of the branching node
is larger or equal to the upper bound, i.e., C(xφik, y

φ
k ) ≥ C∗.

We update C∗ by C(xφik, y
φ
k ) when a leaf node, where all

sensors have been successfully deployed, is feasible and
C(xφik, y

φ
k ) < C∗. Furthermore, the total frame rates arriving

to processor k is calculated by λ =
∑
i′∈Nf x

φ
i′kλi′ . The

inequality λ ≤ b1/tedge
fφ c is used to take the place of constraint

C2, where the latter term is the service capability of a
processor. The approach maintains the global information λ̂F

iφ

and λ̂IF
iφ to reduce the check times of feasibility problems FP .

There are three cases for sensor i with scheme φ: i) if λ ≤ λ̂F
iφ

then FP is feasible; ii) if λ ≥ λ̂IF
iφ then FP is infeasible; iii)

if λ > λ̂F
iφ and λ < λ̂IF

iφ, the feasibility of FP needs to be
checked again. If FP turns out to be feasible then λ̂F

iφ is
updated by λ; otherwise, λ̂IF

iφ is updated by λ.
Since the problem FP is in SDP formulation, the feasibility

check to FP has polynomial worst-case complexity. To per-
form an exhaustive search to solve IP , Algorithm 1 requires a
total N |Φ| times of feasibility checks. It should be noted that
the NP-hard property of the MINLP problem (28) will not
be changed by any equivalent transformation. That is to say,
the computational complexity of the proposed BNC approach,
i.e., Algorithm 2, is still dominated by the solution space of
the BNB tree. Therefore, the proposed BNC approach in the
worse case needs an exponential number of feasibility checks.
Nevertheless, the advantage over the Benders decomposition
method [29], which tackles the integer programming subprob-
lem at every iteration, is that the proposed BNC approach
solves the 0-1 integer programming problem BP only once.
Besides, the proposed BNC approach ensures that the cost
minimization problem in (28) can be solved optimally and
efficiently. In the beginning, the problem IP generates a
high-quality initial upper bound and therefore can reject more
branch nodes. In addition, the global information helps to
reduce the search space in two aspects: i) the records of
candidate service placement schemes [Φc

i] avoid invalid search
process and therefore can greatly prune the BNB tree; ii)
most of the time-consuming feasibility check to FP can be
saved with the assistance of λ̂F

iφ and λ̂IF
iφ. We will demonstrate

through simulations that the proposed BNC approach can save
a huge number of feasibility checks and therefore accelerate
the convergence to the optimal solution.

VI. SIMULATION RESULTS

In this section, we evaluate the proposed framework through
extensive simulations for those sensors executing the inspec-

Algorithm 2: Branch-and-Check (B&C) Approach
1 Solve IP by Algorithm 1 and obtain the initial solution

[xφi ], the global information [Φc
i], [λ̂F

iφ], and [λ̂IF
iφ].

2 Assign x̂φik = ŷφk = xφi for ∀k = i.
3 Remove infeasible sensors from Nf by (29) and meanwhile

make |Kf | = |Nf |.
4 Calculate the upper bound C∗ = C(xφik, y

φ
k ).

5 Create a queue and store the root node as (0, [x̂φik], [ŷφk ]).
6 while the queue is not empty do
7 Take a node (i, [xφik], [yφk ]) off the queue.
8 if i is not the last element of Nf then
9 Update i to the next element of Nf .

10 for φ ∈ Φi do
11 1) Deploy to a vacant processor:
12 Set [x̃φik] = [xφik], [ỹφk ] = [yφk ].
13 Set x̃φik = 1 and ỹφk = 1 with any one

k ∈ {k : ỹφk = 0, k ∈ Kf}.
14 Store (i, [x̃φik], [ỹφk ]) to the queue if

C(x̃φik, ỹ
φ
k ) < C∗.

15 2) Deploy to an occupied processor:
16 for k ∈ {k : ỹφk = 1, k ∈ Kf , φ 6= co} do
17 Set [x̃φik] = [xφik], [ỹφk ] = [yφk ], x̃φik = 1.
18 Calculate λ =

∑
i′∈Nf

xφi′kλi′ .

19 if C(x̃φik, ỹ
φ
k ) < C∗ and λ ≤ b1/tedge

fφ c then
20 Set flag = feasible.
21 for i′ ∈ {i′ : xφi′k = 1, i′ ∈ Nf} do
22 if Γ′i′ + Θi′ < 0 then
23 if λ > λ̂F

i′φ and λ < λ̂IF
i′φ then

24 if FP is feasible to i′ then
25 Set λ̂F

i′φ = λ.
26 else
27 Set λ̂IF

i′φ = λ and
flag = infeasible.

28 end
29 else if λ ≥ λ̂IF

i′φ then
30 Set flag = infeasible.
31 end
32 else
33 Set flag = infeasible.
34 end
35 end
36 Store (i, [x̃φik], [ỹφk ]) to the queue if

flag is feasible.
37 end
38 end
39 end
40 else
41 if C(xφik, y

φ
k ) < C∗ then

42 Update C∗ = C(xφik, y
φ
k ).

43 Update [x̂φik] = [xφik], [ŷφk ] = [yφk ].
44 end
45 end
46 end
47 Output: optimal value C∗, optimal solution [x̂φik] and [ŷφk ].

tion tasks of type f . Within the 40m×40m smart factory, four
802.11.ax APs are located in a grid topology. Total |Nf | vision
sensors are randomly and uniformly deployed and each sensor
connects to its nearest AP by default. The key simulation
parameters are listed in Table II. Specifically, the unit price
c and the power consumption of a processor are according
to the actual information of GeForce GTX 1060. The service
fee of the cloud πcld comes from the table in [31] published
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Fig. 3. Probability distribution of channel access delay.

TABLE II
LIST OF KEY SIMULATION PARAMETERS

Parameter Value
Frequency band, B, ρ 5GHz, 20MHz, 16dBm
Pathloss model [30] PL(d) = 40.05

+20 log10(min{d, 10}) + (d > 10)35 log10(d/10)
Shadowing standard deviation 5dB
Control bit rate 11.8Mbps
Trigger frame (TF) 140bytes at 11.8Mbps
Packet header (H) 16(PHY) + 28(MAC)bytes
ACK 14 bytes at 11.8Mbps
SIFS, Tδ , tprog 16us, 3us, 10ms
W , m, R 32, 5, 6
N , Nr, |Nf | 15, 2, 10
πcld, c, γ $1.2, $799, $2.3874
∆, 1− ε 2year, 0.95
bf , bce

f , rcld 30KB, 5KB, 50Mbps
Processor’s power consumption 120W

by Google Cloud and the coefficient converting power con-
sumption to cost γ is announced by Taiwan Power Company
in 2020. Other parameters in Table II, if not mentioned,
follow the similar settings in [22, 23]. Moreover, we define
the latency requirement of each sensor i as the reciprocal of
its frame sampling rate, i.e., Lreq

i = 1/λi. Since the cloud
center generally is more powerful than the edge cluster, we
assume that the processing time at the cloud is three times
faster than the local processor at the edge according to our
empirical investigation, which is reasonable but not absolute.
We compare five service placement approaches for the decom-
posable inspection tasks, including Edge-Only, Cloud-Only,
Dedicated, Proposed, and R&R [32]. Similar to the Proposed
approach, the Dedicated approach takes full advantage of the
cloud-edge computing architecture to enable all three feasible
service placement schemes. However, it serves each task by
a dedicated processor while the Proposed approach allows
processor sharing. The R&R approach in [32], which utilizes
binary variable relaxation and recovery to tackle the difficulty
of the MINLP problem, is applied for performance comparison
with the proposed BNC approach.

We first present the probability distribution of channel
access delay in Fig. 3. We observe that more number of associ-
ated sensors to an AP increases both the mean and variance of
channel access delay because a transmitted packet has a higher
probability to encounter a collision. On the contrary, more RA-
RUs decreases the collision probability and therefore helps to
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Fig. 4. Service placement of Proposed versus network configurations.

win the UORA contention process. The cumulative distribution
function (CDF) in Fig. 3(c) shows that the system can achieve
less than 20ms channel access delay in most cases but still has
a small probability to suffer from high delay. That is to say,
the risk of inspection failure is inevitable under strict latency
requirements. By adopting the Proposed approach, the service
placement versus different network configurations is illustrated
in Fig. 4, where the proportion represents the number sensors
of each service placement scheme over the total number. With
the increase of associated sensors to each AP in Fig. 4(a), the
CO scheme is more attractive than the CE scheme because the
cloud has more powerful computing capabilities and therefore
the CO scheme can greatly reduce the total service latency.
Besides, some sensors under N = 20 even fail to be served due
to the violation of the latency requirement and the reliability
threshold. Basing on the discussions of Fig. 3, we expect that
the increase of RA-RUs will achieve similar outcomes to the
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Fig. 5. Performance versus operation duration ∆.

decease of associated sensors. However, Fig. 4(b) displays
an opposite result because more RA-RUs also means less
bandwidth allocated to each RA-RU and therefore results in a
longer transmission delay. In other words, there is a tradeoff
between the channel access delay and transmission delay when
a different number of RA-RUs is announced.

The performance versus operation duration is demonstrated
in Fig. 5, where the average operational cost is calculated
by the total operation cost over the operation duration in
years. Specifically, the Edge-Only approach is not illustrated
in Fig. 5(a) because it only can serve about half of sensors
while the other approaches successfully serve all sensors. We
observe that the average operation cost decreases with the
increase of duration in Fig. 5(a). Compared with the Dedicated
approach, the Proposed approach deploys fewer processors
at the edge so that it can save a large amount of operation
cost. The R&R approach requires more operation cost than the
Proposed approach because the former applies a rounding-off
method to recover the binary variables while the latter can
achieve the optimal offloading service deployment. Fig. 5(b)
indicates that the EO scheme will be preferred with a long
duration of running because the extra cost to the processor
deployment plus the energy consumption will be less than the
service fee paid to the cloud. Fig. 6 exhibits some evaluation
results under the reliability threshold, which determines the
tolerance of inspection failure. Some sensors will encounter
unsatisfied inspection risk under the strict reliability threshold
and therefore they are rejected to serve. Compared with
the Dedicated approach, the Proposed approach exploits the
advantage of processor sharing and the CE scheme becomes
the best scheme to save operation cost when the inspection
risk is not the matter.

Note that we have assumed that the processing time at the
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Fig. 6. Performance versus reliability threshold 1− ε.

cloud is three times faster than the local processor at the edge
for the previous simulations. However, this assumption is not
compatible with all cases in reality. Therefore, we demonstrate
the performance versus the ratio of the computing capability of
the cloud over the local processor at the edge, as shown in Fig.
7. Fig. 7(a) shows that the CO scheme becomes more attractive
but the EO scheme gradually losses the advantage with the
increase of computing capability of the cloud. The reason
is that the CO scheme provides faster offloading services so
that the round-trip of propagation delay becomes negligible.
In Fig. 7(b), the Edge-Only approach is not illustrated due
to the same reason as Fig. 5(a). We observe that the higher
computing capability of the cloud will save the total operation
cost because the CO scheme cuts down the deployment cost
of buying local processors compared with the EO and CE
schemes. Finally, we find out that the total operation cost
increases steadily against the number of sensors in Fig. 8(a)
because more sensors are successfully served. The R&R ap-
proach outperforms other approaches except for the Proposed
approach. Moreover, the operation cost reduction between the
Dedicated and Proposed approaches becomes larger with the
increase of sensors. Note that the practical computation time
of the proposed BNC approach depends on not only the com-
puting power of the processor but also which programming
language is used. Altenatively, we demonstrate the number of
feasible checks between the proposed BNC approach and the
benchmark BNB method to verify the efficiency since the cost
of solving a feasibility check is in polynomial time complexity.
In Fig. 8(b), it should be noted that the left and right y-axes
denote the scale of the required number of feasible checks
between the BNB and BNC approaches, respectively. We can
observe that the proposed BNC greatly reduces the number of
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feasibility checks of FP compared with the benchmark BNB
method and therefore can save a large amount of computation
time. Specifically, the average number of feasible checks
is approximately proportional to the number of inspection
sensors, which means that the proposed BNC approach on
average can achieve polynomial computation time.

VII. CONCLUSIONS

We proposed a risk-aware cloud-edge computing framework
for the delay-sensitive inspections of autonomous manufac-
turing. We utilize CVaR to measure the inspection risk and
formulate a cost minimization problem to optimally deploy the
decomposable inspection tasks. The results show that there is
a tradeoff between the channel access delay and transmission
delay when a different number of RA-RUs is announced.
Besides, the EO scheme is preferred with a long duration
of running and the CE scheme is the best scheme to save
operation cost when the inspection risk is not the matter. The
processor sharing strategy can save a large amount of operation
costs. The proposed framework is valuable for future IIoT
with next-generation wireless communication and cloud-edge
computing infrastructure.

Note that the proposed framework provides a one-shot solu-
tion for optimal offloading service deployment by considering
the long-term operation cost, it is difficult to cope with the
dynamic changes of the environments, such as varying wireless
channels, indeterministic arrivals of computation tasks, and
so on. Therefore, one of the future directions is to propose
some online solution against system dynamics basing on
the current proposed solution, which is utilized as an initial
resource allocation and offloading service deployment. The
power control for channel access is another future direction,
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which can not only reduce the energy consumption of data
communications and but also decrease co-channel interference
and thus reduce the channel access delay. Furthermore, a
promising research topic is a coexistence between 802.11ax
and the upcoming 5G NR-U communication protocols for
IIoT.
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